Search results for " ATOMS"

showing 10 items of 59 documents

Polar bosons in one-dimensional disordered optical lattices

2013

We analyze the effects of disorder and quasi-disorder on the ground-state properties of ultra-cold polar bosons in optical lattices. We show that the interplay between disorder and inter-site interactions leads to rich phase diagrams. A uniform disorder leads to a Haldane-insulator phase with finite parity order, whereas the density-wave phase becomes a Bose-glass at very weak disorder. For quasi-disorder, the Haldane insulator connects with a gapped generalized incommesurate density wave without an intermediate critical region.

Anderson localization[PHYS.COND.GAS]Physics [physics]/Condensed Matter [cond-mat]/Quantum Gases [cond-mat.quant-gas]PACS : 67.85.-d 05.30.Jp 61.44.Fw 75.10.PqFOS: Physical sciences01 natural sciencesCondensed Matter::Disordered Systems and Neural NetworksUltracold atoms010305 fluids & plasmasDensity wave theoryCondensed Matter - Strongly Correlated ElectronsUltracold atomQuantum mechanics0103 physical sciencesAnderson localization010306 general physicsBosonPhase diagramPhysicsCondensed Matter::Quantum Gasesdipolar interactionsCondensed matter physicsStrongly Correlated Electrons (cond-mat.str-el)Parity (physics)Disordered Systems and Neural Networks (cond-mat.dis-nn)Condensed Matter - Disordered Systems and Neural NetworksAubry-André transitionCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsQuantum Gases (cond-mat.quant-gas)PolarCondensed Matter::Strongly Correlated ElectronsCondensed Matter - Quantum Gases
researchProduct

ΟΓΚΟΙ atomici? Ancora sulle particelle di Asclepiade di Bitinia

2020

The essay takes up again the debated problem of the relationship between the ὄγκοι of the medical system of Asclepiades of Bithynia and the atoms, in the light of the bibliography on the subject and through the analysis of a Galenic passage so far remained in shadow. In De simplicium medicamentorum facultatibus V 25, K. XI 783,3 suggests to change the text printed by the editors, ἐξ ὄγκων ἀτόμων, into ἐξ ὄγκων ἀτόμων.

Asclepiades of Bithynia ὄγκοι atomsSettore L-FIL-LET/02 - Lingua E Letteratura Greca
researchProduct

Probing the bond order wave phase transitions of the ionic Hubbard model by superlattice modulation spectroscopy

2017

An exotic phase, the bond order wave, characterized by the spontaneous dimerization of the hopping, has been predicted to exist sandwiched between the band and Mott insulators in systems described by the ionic Hubbard model. Despite growing theoretical evidences, this phase still evades experimental detection. Given the recent realization of the ionic Hubbard model in ultracold atomic gases, we propose here to detect the bond order wave using superlattice modulation spectroscopy. We demonstrate, with the help of time-dependent density-matrix renormalization group and bosonization, that this spectroscopic approach reveals characteristics of both the Ising and Kosterlitz-Thouless transitions …

BosonizationHubbard model[PHYS.COND.GAS]Physics [physics]/Condensed Matter [cond-mat]/Quantum Gases [cond-mat.quant-gas]SuperlatticeGeneral Physics and AstronomyIonic bondingFOS: Physical sciences01 natural sciencesCondensed Matter - Strongly Correlated ElectronsPhysics and Astronomy (all)0103 physical sciencesBosonizationCold atoms010306 general physicsPhysicsCondensed Matter::Quantum GasesCondensed matter physicsDensity Matrix Renormalization GroupStrongly Correlated Electrons (cond-mat.str-el)010308 nuclear & particles physicsMott insulatorBerezinskii-Kosterlitz-Thouless transitionIsing transitionRenormalization groupBond orderQuantum Gases (cond-mat.quant-gas)Ising modelCondensed Matter::Strongly Correlated ElectronsCondensed Matter - Quantum Gases
researchProduct

Circular dichroism of magnetically induced transitions for D 2 lines of alkali atoms

2018

In this letter we study magnetic circular dichroism in alkali atoms exhibiting asymmetric behaviour of magnetically induced transitions. The magnetic field induces transitions between hyperfine levels of alkali atoms and in the range of magnetic field, the intensities of these transitions experience significant enhancement. We have inferred a general rule applicable for the D 2 lines of all alkali atoms, that is the transition intensity enhancement is around four times larger for the case of than for excitation for , whereas it is several hundreds of thousand times larger in the case of than that for polarization for . This asymmetric behaviour results in circular dichroism. For experimenta…

Circular dichroismAlkali atomsMaterials scienceMagnetic circular dichroismGeneral Physics and AstronomyParity (physics)01 natural sciencesMolecular physicsMagnetic field010309 opticsLaser linewidth0103 physical sciencesPhysics::Atomic Physics010306 general physicsHyperfine structureExcitationEPL (Europhysics Letters)
researchProduct

2-qubit quantum state transfer in spin chains and cold atoms with weak links

2017

In this paper we discuss the implementation of 2-qubit quantum state transfer (QST) in inhomogeneous spin chains where the sender and the receiver blocks are coupled through the bulk channel via weak links. The fidelity and the typical timescale of the QST are discussed as a function of the parameters of the weak links. Given the possibility of implementing with cold atoms in optical lattices a variety of condensed matter systems, including spin systems, we also discuss the possible implementation of the discussed 2-qubit QST with cold gases with weak links, together with a discussion of the applications and limitations of the presented results.

Condensed Matter::Quantum GasesPhysicsQuantum physiccondensed matterPhysics and Astronomy (miscellaneous)Quantum gasQuantum physicscold atomquantum gaseFunction (mathematics)cold atomsquantum state transfer01 natural sciences010305 fluids & plasmas3. Good healthQubitQuantum mechanics0103 physical sciencesQuantum state transfercold atoms; condensed matter; quantum gases; Quantum physics; quantum state transfer; Physics and Astronomy (miscellaneous)quantum gases010306 general physicsSpin-½
researchProduct

Optomechanical Rydberg-atom excitation via dynamic Casimir-Polder coupling

2014

We study the optomechanical coupling of a oscillating effective mirror with a Rydberg atomic gas, mediated by the dynamical atom-mirror Casimir-Polder force. This coupling may produce a near-field resonant atomic excitation whose probability scales as $\propto (d^2\;a\;n^4\;t)^2/z_0^8$, where $z_0$ is the average atom-surface distance, $d$ the atomic dipole moment, $a$ the mirror's effective oscillation amplitude, $n$ the initial principal quantum number, and $t$ the time. We propose an experimental configuration to realize this system with a cold atom gas trapped at a distance $\sim 2\cdot10 \, \mu$m from a semiconductor substrate, whose dielectric constant is periodically driven by an ext…

CouplingPhysicsCondensed Matter::Quantum GasesQuantum PhysicsRydberg Atoms[PHYS.COND.GAS]Physics [physics]/Condensed Matter [cond-mat]/Quantum Gases [cond-mat.quant-gas]Dynamical Casimir and Casimir-Polder effectGeneral Physics and AstronomyFOS: Physical sciences7. Clean energyQuantum OptomechanicCasimir effectDipolesymbols.namesakeUltracold atomRydberg atomPrincipal quantum numberRydberg formulasymbolsPhysics::Atomic PhysicsAtomic physics[PHYS.COND.CM-SM]Physics [physics]/Condensed Matter [cond-mat]/Statistical Mechanics [cond-mat.stat-mech]Quantum Physics (quant-ph)Excitation
researchProduct

Magic numbers, excitation levels, and other properties of small neutral math clusters (N < 50)

2006

The ground-state energies and the radial and pair distribution functions of neutral math clusters are systematically calculated by the diffusion Monte Carlo method in steps of one math atom from 3 to 50 atoms. In addition the chemical potential and the low-lying excitation levels of each cluster are determined with high precision. These calculations reveal that the “magic numbers” observed in experimental math cluster size distributions, measured for free jet gas expansions by nondestructive matter-wave diffraction, are not caused by enhanced stabilities. Instead they are explained in terms of an enhanced growth due to sharp peaks in the equilibrium concentrations in the early part of the e…

DiffusionHelium neutral atoms ; Atomic clusters ; Ground states ; Excited states ; Chemical potential ; Diffusion ; Monte Carlo methods ; Molecular configurationsHelium neutral atomsAtomic clustersExcited statesMonte Carlo methods:FÍSICA::Química física [UNESCO]Chemical potentialMolecular configurationsGround statesUNESCO::FÍSICA::Química física
researchProduct

Spontaneous emission of a sodium Rydberg atom close to an optical nanofibre

2019

International audience; We report on numerical calculations of the spontaneous emission rate of a Rydberg-excited sodium atom in the vicinity of an optical nanobre. In particular, we study how this rate varies with the distance of the atom to the bre, the bre's radius, the symmetry s or p of the Rydberg state as well as its principal quantum number. We nd that a fraction of the spontaneously emitted light can be captured and guided along the bre. This suggests that such a setup could be used for networking atomic ensembles, manipulated in a collective way due to the Rydberg blockade phenomenon.

FOS: Physical sciences02 engineering and technologyoptical nanofibres01 natural sciencessymbols.namesake020210 optoelectronics & photonics[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]0103 physical sciencesAtomPrincipal quantum number0202 electrical engineering electronic engineering information engineeringSpontaneous emissionPhysics::Atomic Physics010306 general physicsPhysicsQuantum Physics[PHYS.PHYS.PHYS-ATOM-PH]Physics [physics]/Physics [physics]/Atomic Physics [physics.atom-ph]Spontaneous emission ratesRadiusCondensed Matter Physicsspontaneous emission ratesAtomic and Molecular Physics and OpticsSymmetry (physics)Optical nanobresRydberg atomRydberg formulasymbols[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph]Atomic physicsRydberg stateQuantum Physics (quant-ph)Rydberg atoms
researchProduct

Graded-index optical fiber emulator of an interacting three-atom system: illumination control of particle statistics and classical non-separability

2019

[EN] We show that a system of three trapped ultracold and strongly interacting atoms in one-dimension can be emulated using an optical fiber with a graded-index profile and thin metallic slabs. While the wave-nature of single quantum particles leads to direct and well known analogies with classical optics, for interacting many-particle systems with unrestricted statistics such analoga are not straightforward. Here we study the symmetries present in the fiber eigenstates by using discrete group theory and show that, by spatially modulating the incident field, one can select the atomic statistics, i.e., emulate a system of three bosons, fermions or two bosons or fermions plus an additional di…

Few atom systemsPhysics and Astronomy (miscellaneous)FOS: Physical sciencesGraded index optical fiber01 natural sciencesUltracold atoms010309 opticsQuantum simulatorsPolitical science0103 physical sciencesEuropean commission010306 general physicsCondensed Matter::Quantum GasesQuantum PhysicsAtomic and Molecular Physics and Opticslcsh:QC1-999Photonic crystal fibersQuantum Gases (cond-mat.quant-gas)Christian ministryQuantum Physics (quant-ph)MATEMATICA APLICADACondensed Matter - Quantum GasesHumanitieslcsh:PhysicsOptics (physics.optics)Physics - OpticsQuantum
researchProduct

Ultraprecise Rydberg atomic localization using optical vortices

2020

We propose a robust localization of the highly-excited Rydberg atoms, interacting with doughnut-shaped optical vortices. Compared with the earlier standing-wave (SW)-based localization methods, a vortex beam can provide an ultrahigh-precision two-dimensional localization solely in the zero-intensity center, within a confined excitation region down to the nanometer scale. We show that the presence of the Rydberg-Rydberg interaction permits counter-intuitively much stronger confinement towards a high spatial resolution when it is partially compensated by a suitable detuning. In addition, applying an auxiliary SW modulation to the two-photon detuning allows a three-dimensional confinement of R…

Field (physics)Atomic Physics (physics.atom-ph)FOS: Physical sciences02 engineering and technology01 natural sciencesPhysics - Atomic Physics010309 opticsRydberg atoms ; atom localization ; optical vortexsymbols.namesakeOptics0103 physical sciencesSpontaneous emissionPhysics::Atomic PhysicsPhysicsQuantum Physicsbusiness.industry021001 nanoscience & nanotechnologyAtomic and Molecular Physics and OpticsVortexModulationRydberg atomRydberg formulasymbolsAtomic physics0210 nano-technologybusinessQuantum Physics (quant-ph)Optical vortexExcitation
researchProduct